Among the branching models used in
software configuration management,
the branch-by-purpose model offers
better support for parallel
development efforts and improved
control of both planned and
emergency software releases.

Chuck Walrad

Davenport
Consulting

Darrel Strom
Expert Support

COMPUTING PRACTICES

The Importance of
Branching Models in SCM

f you want to improve software quality, you

must first understand your software. What

are its pieces? How are they organized and

related to one another? If you do not under-

stand your code base, your odds of updating
it without breaking something are poor.

All too often, we see projects brought to their knees
while trying to get the software out the door to test-
ing groups or to customers for acceptance testing.
The developers have worked feverishly to get the fea-
tures in, and the testers are waiting to test, but the
process fails at the integration point. The software
components don’t hang together, and some compo-
nents may be missing. Wrong versions get distrib-
uted, and previously fixed bugs somehow reappear.

Why don’t organizations have a better handle on
their software? Is the problem a function of code size
and complexity, is it inherent in parallel development
efforts, or is it simply a result of staff turnover or cut-
ting corners to meet schedule pressures?

All of these factors can contribute to the situation,
but the real problem lies in a fundamental misun-
derstanding of software configuration management
as it applies to real-world application development.

SCM DEFINED

Software configuration management serves two
different functions:

e Management support for controlling changes
to software products. This function includes
the activities classically associated with

0018-9162/02/$17.00 © 2002 IEEE

SCM'’—specifically, identifying the software
components, controlling changes to them,
recording and reporting component and con-
figuration status, and conducting audits and
reviews.

¢ Development support for coordinating file
changes among product developers.** These
activities include file version identification, soft-
ware building, and release management.

Branching is integral to version management,
software build correctness, and release manage-
ment. It enables parallel development of a new sys-
tem and provides concurrent support of multiple
releases by labeling each instance of a branched con-
figuration item and establishing a mapping between
the label and the module revisions, as described in
the “SCM Glossary” sidebar.

Good decisions about when and why to branch
can make it much easier for developers and release
engineers to coordinate software product changes.
The right branching strategy makes it easier to
deliver the right code, re-create past releases, and—
if necessary—roll back to a previous release.

Adopting the right SCM branching model facili-
tates rapid development, increases overall product
quality and process efficiency, reduces the incidence
of software failures, and improves organizational
performance.

THE BRANCHING MODEL

A branching model embodies the rationale

September 2002

SCM Glossary

Some basic definitions are helpful in
developing a fundamental understand-
ing of software configuration manage-
ment in the real world of application
development.

Baseline. In software development, the
IEEE standards define a baseline as a
“specification or product that has been
formally reviewed and agreed upon, that
serves thereafter as the basis for further
development, and that can be changed
only through formal change control pro-
cedures.”! Alternatively, a baseline can
be described as a “set of software items
formally designated and fixed at a spe-
cific time during the software life cycle,”
or it can “refer to a particular version of
a software item that has been agreed
upon. In either case, the baseline can only
be changed through formal change con-
trol procedures.”?

Branch. “A branch is an agreed upon
split of an item [item, product, or system]|
into multiple iterations [identifying each]
...instance of item, product, or system,
...[providing] an exact mapping between
a version label and module revisions.”?

Configuration management or soft-
ware configuration management. (1)
“SCM involves identifying the configu-
ration of the software at given points in
time, systematically controlling changes
to the configuration, and maintaining

the integrity and traceability of the con-
figuration throughout the software life
cycle. The work products placed under
SCM include software products that are
delivered to the customer and the items
that are identified with or required to
create these software products.” This
includes the tool chain used to create,
test, and maintain the product. (2) “A
discipline applying technical and admin-
istrative direction and surveillance to:
identify and document the functional
and physical characteristics of a config-
uration item, control changes to those
characteristics, record and report change
processing and implementation status,
and verify compliance with specified
requirements.” "

Release. The distribution of a software
configuration item outside the develop-
ment activity. This includes internal
releases as well as distribution to cus-
tomers.’

Release engineering. The process of
moving a configuration through the soft-
ware life cycle and delivering the finished
product in the appropriate format and
media.

Release management. Identification,
packaging, and delivery of a product’s
elements, such as the executable, docu-
mentation, release notes, and configura-
tion data.’

Software configuration item. An SCI
aggregates software designated for con-
figuration management and treats it as a
single entity in the SCM process.'

Version. (1) “An initial release or re-
release of a software configuration item,
associated with a complete compilation
or recompilation of the SW configuration
item.”! (2) “An initial release or com-
plete re-release of a document, as op-
posed to a revision resulting from issuing
change pages to a previous release.”! (3)
“A particular identified and specified
software item.”

References

1. IEEE Std. 610.12-1990, Standard Glos-
sary of Software Engineering Terminol-
ogy, IEEE Press, Piscataway, N.]J., 1990.

2. Software Engineering Body of Knowl-
edge, trial version, IEEE Press, Piscat-
away, N.J., 2001, p. 108.

3. M. Ben-Menachem, Software Configura-
tion Guidebook, McGraw Hill, Maiden-
head, Berkshire, UK, 1994.

4. M.Paulk, et al., Key Practices of the Capa-
bility Maturity Model, Version 1.1, SEI-
93-TR-25, Software Eng. Inst., Carnegie
Mellon University, Pittsburgh, 1993.

5. Software Engineering Body of Knowl-
edge, trial version, IEEE Press, Piscat-
away, N.J., 2001, p. 111.

adopted for replicating a configuration item—
whether a program module or subsystem—into
multiple instantiations, each of which bears its own
unique and appropriate configuration-identifica-
tion label.

Selecting the appropriate branching model lets
the release engineer serve several masters that some-
times have conflicting interests or priorities: the
development group, the testing group, and the sup-
port group—which represents the product’s end
users. To determine the adequacy of a branching
model, we evaluate its ability to:

® maintain a stable base for new development
by supporting nightly or continuous integra-
tion via builds from the top,

¢ deliver emergency releases—which contain all
necessary fixes and no other changes—to test-
ing and to customers,

e test releases that contain all the necessary fixes
and no other changes,

¢ minimize the impact of emergency releases on

Computer

new development efforts,

e roll back to a previous production release if
necessary,

e support multiple sequential versions in the
field, and

e support multiple concurrent versions—such as
alternative versions for different platforms or
different customers—in the field.

BRANCH-BY-RELEASE MODEL

Conventional wisdom and existing standards tell
us to manage a software configuration as a series of
successive baselines.> The branch-by-release model
of code management instantiates this approach. In
this conventional model, the code branches upon a
decision to release a new version of the product.
The new branch serves as the baseline for contin-
uing development. As Figure 1 shows, the old
branch contains the released version—the actual
historical baseline reference point. That branch is
left behind to wither.

Release Release to Agprof\{ed
to QA production ug fix
1
1
. 1
Release Development l QA lProductlon v
1.1 Merge bug fix to Release 1.2
Release Release to
to 0A production
Development l QA l Production
Release
1.2 Merge bug fix to Release 1.3
Release Releasel to
00 production
Devel t l P i
Release evelopment. QA roduction
1.3
Release Release to
to QA production
Release Development l QA Production
1.4

The branch-by-release model appears to provide
the series of successive baselines that SCM con-
ventionally requires. It provides a common base for
developers to use in making further changes to the
code. However, it has two important drawbacks:

e it generally requires serial changes to the code
such as sequential check-ins and check-outs,
rather than parallel development; and

¢ it adds complexity and overhead to the sup-
port of released versions.

The branch-by-release model is easy to under-
stand—before postrelease bug-fix releases come
into play, at least. But making a fix to an earlier
release poses many opportunities to lose approved
bug fixes or other changes. As long as any version
of the product remains supported in the field, the
need for a bug fix—and thus an emergency
release—remains possible. In such cases, develop-
ers must make the fix in that old branch and create
a new release from it. That’s pretty straightforward,
but complications arise. Developers must propa-
gate the bug fix down through each subsequent
branch to ensure that the bug doesn’t reappear in
later releases, where it has never been fixed in that
release’s codeline.

Isolating specific changes and confirming the
need to propagate each one to all downstream
releases creates an added communication and coor-
dination burden. The environment changes con-
stantly as developers move from one development
line to another with each new release. Nor does the
model support longer-term development parallel
to a release cycle—all code checked out must be
checked back in prior to release.

If developers do not check all code back in prior
to release, the model does not allow building from
the top of the code after release. When the devel-
opers check in additional changes after the release,

the release engineer must make sure that those
untested changes do not find their way into any sub-
sequent new versions, such as emergency releases,
created from that line of code. This is particularly
problematic because not building from the top dras-
tically increases the risk of incorrect builds for emer-
gency releases. It also undermines the whole baseline
concept, because changes never released to the out-
side have now been introduced in the baseline code.

Finally, the branch-by-release model does not
provide a straightforward way to release and main-
tain multiple concurrent versions in the field.

BUILD-BY-BUG-NUMBER SYNDROME

Using the branch-by-release model leads to the
dreaded build-by-bug-number syndrome. This occurs
when code has been checked in to the old branch
after the release, so that the code on the branch no
longer matches what was released. The release engi-
neer must handpick the bits of code associated with
specific bug fixes that project management or the
organization’s change control board has decreed nec-
essary for a release. This situation usually arises at
the worst time—when the company needs an emer-
gency release. This pressures the team to quickly pro-
duce a fix that will remedy an urgent situation.

Tedious at best, and often arduous, the build-by-
bug-number process challenges the release engineer
to ensure that the release build includes only the
pinpointed fixes, all the bits of code needed for each
fix, and no other changes. This process often
requires the sometimes unwilling participation of
the development team, increasing the number of
people involved in a tense situation.

How did the project get to this point? Often, the
project’s management team has determined that
changes originally intended for a release could not
be included without undue risk. For example, the
change might have been seen as potentially desta-
bilizing and there wasn’t sufficient time to test it.

September 2002

Figure 1. Branch-by-
release model. In
this conventional
model, the code
branches when the
release engineer
delivers a new
release. The new
branch serves as the
haseline for contin-
uing development
while the old
branch—the code’s
haseline historical
reference—is left
behind.

Figure 2. Build-by-
bug-number
syndrome. This phe-
nomenon occurs
when the release
engineer must hand-
pick bits of code
associated with spe-
cific bug fixes, then
ensure that only
those bits needed
for the fixes make it
into the release
build.

Figure 3. Branch-hy-
purpose model. The
release engineer
spins off new
branches for
specific purposes
such as alpha and
beta testing, but
development work
remains on the main
development line.

Approved
bug fix
Release | Release to
to QA i production
1
Release Development l QA i l Production
1.1 .

The build to include the approved bug fix
must notinclude the previous (dotted line)

change.
The dotted line change must be checked
into the Release 1.1 codeline and then
merged into the Release 1.2 codeline.
Release Development b
- W
Bridge
Approved f
bug fi
HE: /I Final release
Feature / Approved / to QA
. freeze bug \fIX Code cH,iII: (code freeze)

' development testing a‘&d approv/éd changes only

De

Normal development

<4 4
/ Merge approved / Merge approved
/ andtested final / and tested
/ bugfixtoDev / emergency
) / bug fix to Dev
/I Approved /I
/ emergency / Approved
Approved I/ Approved bug fix I,’ emergency
final bug fix / release to \ / releaseto
\ / production ‘\ / production
Release Alpha1 | Alpha n | Beta 1 Beta n ¥/ ¥/
candidate testing testing testing testing Production Testing Idle Testing Idle
candidate
1.0.
Production
release

Alternatively, the developers simply could not com-
plete the desired changes in time.

Figure 2 shows the dilemma developers face
when confronting this situation. Version control
tools require that checked-out code must be
checked back in to the same code line from which
it was originally taken. If developers do not check
the code back in prior to the software product’s
release, they cannot apply that code directly to the
code line being prepared for the next release. The
lagging check-in must first be checked into the line
it came from, then migrated to the later code line.

Another option requires the developer to aban-
don those changes and start again on the new devel-
opment line. Obviously, the developer will oppose
this course and the lost work it entails.

As a result, any emergency releases made for that
old line must resort to building-by-bug-number. To
ensure that only the necessary bug fixes and no
other changes—such as lagging check-ins—appear
in the emergency release, the release engineer must
handpick the specific bits of code associated with

Computer

Production 1.0 Production 1.1

the fix. This approach precludes building from the
top because doing so would pick up stray changes.
Obviously, this scenario invites failure.

In some cases, when poor-quality code requires
many postrelease bug fixes, it can lead to aban-
donment of a disciplined release process in favor
of slipstream development, as described in the
“Slipstream Development” sidebar.

IMPROVED CONFIGURATION
MANAGEMENT MODEL

In the branch-by-purpose model, shown in
Figure 3, release engineering bases the decision to
branch on the need to satisfy a specific purpose.
Generally, that purpose involves releasing the soft-
ware and its associated elements, such as docu-
mentation, outside the development group. These
releases typically mark significant project mile-
stones, such as release to QA for alpha (system)
testing, release for beta testing, and so on.

The branch-by-purpose model supports regular
releases by design, along with controlled emergency

Slipstream Development

In-house application development
groups in information technology orga-
nizations often fall into slipstream devel-
opment mode, rather than following a
discipline of full product releases. When
this happens, the notion of baseline
becomes inverted. For one thing, there
are no declared product releases. Rather,
the release folders that these IT groups
use may contain just snapshots of the
code at particular times, rather than true
releases. These snapshots attempt to cap-
ture the application’s state to establish
source code baselines for performing fur-
ther changes and syncing up the devel-
opment code line with the actual
production code.

They perform this activity after the
fact, so that what is in the release folders
trails the running system. This approach
aims merely to capture and archive
what’s already in production, whatever
that happens to be. True SCM, on the
other hand, tags and selects in advance
the components for building a new ver-
sion of the application. The release is
then built using this information.

This difference is crucial. In the capture-
and-archive model, the application in pro-
duction use is the only embodiment of the
product’s true state and the SCM process
follows along, trying to keep track of
things and provide developers a reliable
baseline to build on. In a true baseline-
and-release model, the release engineer
creates the baseline a priori, using the
SCM system to build a new version of the
application from previously identified
configuration items, and then releases that
version, exactly matching the baseline.

Organizations that use a slipstream
development-and-delivery process usu-
ally rely on the capture-and-archive

baselining model. These organizations do
not offer true software product releases,
per se, just a continuous stream of
updates—or patches—to the software in
production use. Although this may be
convenient for emergency fixes, if over-
generalized it can become the main way
every change enters production.

When an organization slips into slip-
stream development and delivery, it never
replaces the entire application. Instead,
it updates the application incrementally,
which creates some complex problems:

e The continuous-stream model
makes it difficult or impossible to
recreate past instantiations. There is
no way to compare the application
as it runs now to the application as
it ran several updates back, nor is
there a straightforward way to roll
back to a previous update stage.

e Testing the evanescent incarnations
of the continuous stream can be dif-
ficult or impossible—and very
expensive. There is rarely a disci-
pline in place to test the full appli-
cation with each individual changed
file—and only that file—and to
refuse additional changes until all
bugs found in that piece have been
resolved and the application has
been successfully regression tested
with just that changed file.

e The continuous-stream model can
also present a challenging security
problem. Once a piece of code
makes it into production, it won’t
be replaced until the next fix to that
file enters production. If someone
slips in a special copy of a piece of
code, that piece could stay in pro-
duction for a long time with no one

ever noticing. Although this sort of
thing can happen with the replace-
the-application model, at least in
that case such alterations should
leave some tracks in the source code.

e Over time, the always-update,
never-replace aspect of the continu-
ous-stream model can lead to the
suspicion that some pieces in pro-
duction weren’t built from the
source code in the development’s
current release source folder, such as
a live hot fix that didn’t make it back
into the source folder. This leads to
the fear that a full rebuild from the
source will not duplicate the run-
ning system. If you can’t re-create
the running system, you’re not in
control.

¢ Having reached this uncomfortable
position, the development team
elects to rebaseline their source code
by capturing and archiving the sys-
tem in production. There is no
branching model. This approach
simply replaces one line of code with
another, at which point the stream
starts anew.

The continuous-stream model also
implicitly assumes that developers can
manage hundreds of files into production
well enough, one at a time. Down that
path lies madness. Even if the individual
files moved along in a completely auto-
mated, foolproof process, it is still nec-
essary to manage, test, and track
hundreds of interdependent parts as they
progress toward production. Even if only
10 percent of the files remain in play
between each capture-and-archive base-
line event, that’s still an impractical num-
ber of components to juggle.

releases as required. Further, it avoids the problems
caused by branch-by-release as exemplified in the
build-by-bug-number syndrome. The branch-by-
purpose model will satisfy all typical evaluation cri-
teria.

This model offers the additional benefit of sim-
plifying things for developers. It lets them work in
the same environment, the main dev branch. This
reduces confusion among the development team
members about where to make changes, makes for
more robust emergency releases, and reduces the
team’s angst about code chill and code freeze.

We have repeatedly seen reasonably mature and
disciplined development teams heatedly resist code
freeze in the branch-by-release model because it left
them no place to check in their in-progress work.
Delaying code chill or code freeze usually com-
presses the testing cycle, lowering release product
quality. Again, forking a new release branch instead
of a new ongoing work branch just works better.

On the other hand, managing this model is more
complex, primarily because it requires a more
sophisticated understanding of SCM and a more
sophisticated use of SCM tools. Further, it turns the

September 2002

Figure 4. Avoiding
the build-by-bug-
number tar pit. In
the branch-by-pur-
pose model, the
developers can just
check the code back
into the main devel-
opment line after
the release’s code
freeze, leaving the
release code
untouched and its
integrity intact.

Feature
freeze

Code chill:
testing and approved changes only

Final release
to QA
(code freeze)

testing

conventional approach on its ear: As before, the
release engineer spins off a new branch for the
product being released, but development remains
on the main dev line.

The product may be released to QA for testing, in
which case the release engineer designates a QA
branch. Or, once the developers and testers have com-
pleted the defect find-and-fix activities, the release
engineer can release the product for production use—
directly to the user in the case of contracted software,
to an operations group in the case of in-house soft-
ware, or—in the case of shrink-wrapped software—
to the manufacturing entity. When releasing the new
version, the release engineer creates a production line
branch—a special branch whose sole purpose is to
support the released version.

The branch-by-purpose model presupposes that
the product release cycle includes a feature freeze
milestone after which developers add no further
features and make no more enhancements to exist-
ing features without careful change evaluation and
control. This milestone marks the entry of devel-
opment activity into code chill. During code chill,
developers make fixes in the dev line and periodi-
cally send new releases containing the fixes to QA.
Each release to QA has it own branch, which makes
it possible to verify whether any given bug appeared
in an earlier release to QA, and to identify both the
release in which a bug is found and the release in
which it is fixed.

As the software gains stability through the test-
ing cycle, fewer and fewer fixes become necessary,
until code chill gives way to code freeze. At the code
freeze milestone, the team presumes the product
ready for final production use, even though it is
only a production candidate that must still undergo
final testing to assure its production readiness.

From this point on, the developer applies any fix
approved by the change control board (or the pro-
ject management team) directly to that QA branch
and migrates the fix to the main dev line. After
testers have verified that the changed code base
works properly, release engineering can release the

Computer

testing

Production candidate 1.1
Idle

Testing

Production 1.1
Production

product to production and create a production
branch. The team uses this same sort of cycle when
a bug found in the field requires an emergency
release, as shown in the Production 1.1 build in
Figure 3.

SUPPORTING PARALLEL DEVELOPMENT

Today’s prevailing climate of rapid development
demands parallel development. The software pro-
ject must proceed with enhancements not intended
for the release currently in progress. Even in those
rare cases in which rapid development is not de
rigueur, the software project may have staff avail-
able during code chill and code freeze to implement
bug fixes for future releases.

To satisfy either of these needs for parallel devel-
opment, release engineering can create temporary
bridge lines, one for those pending bug fixes and
one for the enhancements, or just one bridge line
for both bug fixes and enhancements. Then they
can merge that line back down into the main dev
line after the production candidate releases.

In the branch-by-release model, on the other
hand, a problem arises when an in-progress code
change must be delayed until after a release. In the
case of orphaned check-outs that didn’t make it
into the release, developers find themselves stuck
between a rock and a hard place because they must

e cither check the changed code back into the
line it came from, which means putting it in
the branch with the released product that did-
n’t contain it, thereby destroying the integrity
of that branch, and then migrate it to the new
release branch; or

e check it out all over again from the new
branch, redo the changes, and check them
back into the new branch.

The branch-by-purpose model obviates this
dilemma. As Figure 4 shows, because the main
development code line hasn’t changed, the devel-
opers can just check the code back into the main

Temporary
codeline

Temporary

codeline

Secondary

codeline

Main codeline

line from which it came, and it will be included in
a future release’s product release cycle. The code
base for the released product, Release 1.1, remains
untouched because it resides on its own branch.

Multiple groups and subprojects

Branch-by-purpose more readily accommodates
the need to have multiple groups working on mul-
tiple subprojects in parallel. Branching can establish
a fully replicated environment in which developers
can modify code and test changes without imped-
ing other developments occurring simultaneously
in the code base. Creating small, purposeful, alter-
nate development lines lets developers check their
code into the appropriate temporary line without
affecting the main line.

The parallel development concept recognizes the
need to frequently merge changes from one line into
another. Because the branch-by-purpose model
anticipates that need, the SCM and release engi-
neering processes can manage merges by design,
making them as painless as possible.

In contrast, the branch-by-release model oper-
ates from the underlying assumption that releases
are linear and sequential, each subsequent release
flowing immediately from its predecessor. Thus,
changes made to an existing release of the current
baseline—or its predecessor, if still in the field—are
somewhat unnatural, and making these changes
requires special effort to ensure that

e any re-release of an old release contains just
the desired changes—typically, bug fixes—and
no others, and

e the release engineer properly merges these
changes into the new, in-progress, release and
into all releases between the old release and the
current release.

In the branch-by-purpose model, on the other
hand, developers work from the underlying
assumption that they are creating a single main line
of code and other artifacts and that, at predeter-
mined times, release engineering will create a sep-

arate branch when it releases a new version of the
product. This approach enables frequent builds
from the top on the main line of code that thus
include all available changes. The best practices of
today’s software companies emphasize frequent
integrations via builds from the top. Such builds
integrate changes bit by bit, as testers and devel-
opers check them in. Builds can be nightly or con-
tinuous. This practice assures continual integration
and avoids the big bang that lots of colliding
changes can cause when the project team delays
integration until the release cycle’s end.

Having a fully replicated environment for mod-
ifying code enables continuous or nightly builds of
each line and further testing of those changes, with-
out impeding the main line’s development. It also
lets multiple developers make multiple changes to
the code for multiple purposes.

While project teams can perform branching for
parallel development at very fine granularity lev-
els—down to each bug fix—they use two common
modes to create branches for alternate development
lines:

¢ when one or several developers will be work-
ing on a small-to-middle-sized change or
related group of changes over several weeks,
or

¢ when many developers must work on a large
change over several months.

Variations of the branch-by-purpose model can
accommodate each mode.

Codeline changes

When testing shows that changes work as
expected, the developers merge the changes into the
main development line. As Figure 5 shows, devel-
opers also periodically merge main codeline bug
fixes and other changes to the temporary line if it
must be maintained for more than a few weeks.

Whether or not developers periodically merge
the main line’s changes, they must merge the
changes up to the temporary line before merging it

Figure 5. Temporary
codeline changes.
The release engi-
neer establishes a
secondary codeline
to handle a major
product change.
Developers can then
branch off one or
more temporary
codelines from this
secondary line and
use them to work
out minor changes.

September 2002

back down to the main line. Integration takes place
on the temporary line, assuring that its changes are
compatible before inserting them into the main line,
which the rest of development depends on.

To make larger, more complex changes, develop-
ers establish a secondary codeline to accommodate
a major product change, such as a rearchitecting
effort. They merge the changes to the main codeline
up to their secondary line every week or so.

Figure 5 shows two temporary lines branching
off the secondary line to let developers work out
the kinks in some small- or medium-sized changes
that depend on changes in the secondary line.

espite its wide use and its appearance of mir-
D roring the conventional standard of sequen-
tial baselines, the branch-by-release model
imposes unnecessary burdens on the software pro-
ject team in supporting released versions of soft-

ware while developing new releases. Error-prone, it
also often requires manual handling of fixes to

Computer

released software. Further, its fundamental flaws
include unnecessary complexity in managing post-
release code fixes and unnecessarily orphaning
changes in progress, which cannot be successfully
injected prior to a scheduled release date.

The branch-by-purpose model, on the other
hand, avoids these pitfalls. In addition, it provides
a structured mechanism for managing multiple
lines of code, supporting the organization’s need to
deliver multiple releases as well as development’s
need to shorten cycle time by using parallel devel-
opment and continuous integration. H

Acknowledgments
We thank Matt Foley and Adonica Gieger for
their helpful comments in reviewing this article.

References

1. PH. Feiler, Configuration Management Models in
Commercial Environments, tech. report CMU/SEI-
91-TR, Software Eng. Inst., Carnegie Mellon Uni-
versity, Pittsburgh, 1991.

2. ANSI/IEEE Std. 828-1983, IEEE Standard for Soft-
ware Configuration Management Plan, TEEE Press,
Piscataway, N.J., 1983.

3. ANSI/IEEE Std. 1042-1987, IEEE Guide to Soft-
ware Configuration Management Content, IEEE
Press, Piscataway, N.]J., 1987.

4. R. Conradi and B. Westfechtel, “Version Models for
Software Configuration Management,” ACM Com-
puting Surveys, vol. 30, no. 2, 1998, p. 233.

5. 1. Sommerville, Software Engineering, Addison-Wes-
ley, Reading, Mass., 1996, p. 657.

Chuck Walrad is managing director of Davenport
Consulting. Her research interests include strate-
gies for the propagation and practical implemen-
tation of best practices in software engineering.
Walrad received an MS in theoretical linguistics
from the University of California, San Diego. She
is a member of the IEEE and the ACM. Contact
her at cwalrad@daven.com.

Darrel Strom is a senior software engineer at
Expert Support. His research interests include
developing software factories that automate the
critical processes required to build and deliver soft-
ware products reliably. Strom received a BS in com-
puter science from the University of Southern
Mississippi. He is a member of the IEEE and the
ACM. Contact him at dstrom@xs.com.

